Empresas | Demanda por Crédito

Variação acumulada no ano 6,3%

Variação mensal -3,6%

Consumidor | Demanda por Crédito

Variação acumulada no ano 8,4%

Variação mensal -2,3%

Empresas | Recuperação de Crédito

Percentual médio no ano 38,7%

Percentual no mês 38,4%

Consumidor | Recuperação de Crédito

Percentual médio no ano 57,3%

Percentual no mês 57,8%

Cartão de Crédito | Cadastro Positivo

Ticket Médio R$ 1.280,32

Pontualidade do pagamento 77,9%

Empréstimo Pessoal | Cadastro Positivo

Ticket Médio R$ 402,57

Pontualidade do pagamento 82,6%

Veículos | Cadastro Positivo

Ticket Médio R$ 1.340,29

Pontualidade do pagamento 80,7%

Consignado | Cadastro Positivo

Ticket Médio R$ 268,95

Pontualidade do pagamento 92,0%

Tentativas de Fraudes

Acumulado no ano (em milhões) 6,94

No mês (em milhões) 1,15

Empresas | Inadimplência

Variação Anual 18,0%

No mês (em milhões) 8,1

MPEs | Inadimplência

Variação Anual 18,5%

No mês (em milhões) 7,7

Consumidor | Inadimplência

Percentual da população adulta 48,5%

No mês (em milhões) 79,2

Atividade do Comércio

Variação acumulada no ano 4,1%

Variação mensal 1,7%

Falência Requerida

Acumulado no ano 236

No mês 61

Recuperação Judicial Requerida

Acumulado no ano 638

No mês 167

Empresas | Demanda por Crédito

Variação acumulada no ano 6,3%

Variação mensal -3,6%

Consumidor | Demanda por Crédito

Variação acumulada no ano 8,4%

Variação mensal -2,3%

Empresas | Recuperação de Crédito

Percentual médio no ano 38,7%

Percentual no mês 38,4%

Consumidor | Recuperação de Crédito

Percentual médio no ano 57,3%

Percentual no mês 57,8%

Cartão de Crédito | Cadastro Positivo

Ticket Médio R$ 1.280,32

Pontualidade do pagamento 77,9%

Empréstimo Pessoal | Cadastro Positivo

Ticket Médio R$ 402,57

Pontualidade do pagamento 82,6%

Veículos | Cadastro Positivo

Ticket Médio R$ 1.340,29

Pontualidade do pagamento 80,7%

Consignado | Cadastro Positivo

Ticket Médio R$ 268,95

Pontualidade do pagamento 92,0%

Tentativas de Fraudes

Acumulado no ano (em milhões) 6,94

No mês (em milhões) 1,15

Empresas | Inadimplência

Variação Anual 18,0%

No mês (em milhões) 8,1

MPEs | Inadimplência

Variação Anual 18,5%

No mês (em milhões) 7,7

Consumidor | Inadimplência

Percentual da população adulta 48,5%

No mês (em milhões) 79,2

Atividade do Comércio

Variação acumulada no ano 4,1%

Variação mensal 1,7%

Falência Requerida

Acumulado no ano 236

No mês 61

Recuperação Judicial Requerida

Acumulado no ano 638

No mês 167

Decisão

Técnica para cálculo da probabilidade de default point-in-time e stress testing para IFRS9

Técnica para cálculo da probabilidade de default point-in-time e stress testing para IFRS9... Saiba mais!

Técnica para cálculo da probabilidade de default point-in-time e stress testing para IFRS9

- Por Jefferson Schoenfeld. Para fins de cálculo de provisão de perdas esperadas associadas ao risco de crédito, atualmente vigora a norma contábil International Financial Reporting Standards 9 (IFRS9) desde janeiro de 2018. Uma novidade em relação à norma anterior é a necessidade de incluir no cálculo do provisionamento as condições econômicas correntes e possíveis alterações nos cenários macroeconômicos previstos. Essa exigência decorre da situação observada na crise financeira mundial de 2007 e 2008 em que, mesmo diante da deterioração do cenário macroeconômico, o método de cálculo adotado na época permitiu um reconhecimento tardio das perdas de crédito, gerando insegurança quanto a eficiência do arcabouço regulatório vigente. Nesse trabalho utilizamos uma técnica de séries temporais, considerando a série de inadimplência de mercado do setor bancário e os efeitos do risco sistêmico, representados por fatores macroeconômicos, e buscamos identificar a existência de uma relação de longo prazo entre eles através da realização de testes de cointegração. Resultados A taxa de inadimplência de 12 meses do setor bancário foi disponibilizada pela Serasa Experian em amostra de CPFs no período compreendido entre março de 2013 e janeiro de 2017. As variáveis exógenas foram obtidas do SGS (Sistema de Gerenciamento de Séries Temporais) do BACEN, são elas:

  • Taxa de desocupação – PNADC
  • Índice de Atividade Econômica do Banco Central (IBC-Br) - com ajuste sazonal
  • Índice nacional de preços ao consumidor-amplo (IPCA)
  • Taxa de juros - CDI acumulada no mês anualizada base 252
  • Índice de Confiança do Consumidor
  • Comprometimento de renda das famílias com o serviço da dívida com o Sistema Financeiro Nacional - Com ajuste sazonal
  • Endividamento das famílias com o Sistema Financeiro Nacional em relação à renda acumulada dos últimos doze meses
  • Rendimento médio real efetivo de todos os trabalhos – PNADC
  • Saldo da carteira de crédito com recursos livres - Pessoas físicas - Cheque especial

O modelo obtido contemplou as variáveis: inadimplência histórica (lag1 e lag2 da primeira diferença), IPCA (lag 3 do acumulado mensal) e Comprometimento de Renda (lead 6), conforme mostrado na tabela abaixo: Tabela 1: Modelo para inadimplência de operações crédito

A comparação entre a inadimplência observada e estimada ficam bem próximas, principalmente a partir de março/2014. Resultando em um Erro Absoluto Médio de 1.35%. Gráfico 1: Comparação do Observado e Estimado:

Dado que não identificamos a presença de correlação serial nos resíduos do modelo obtido, partimos para o teste de cointegração. Como verificado na tabela 2 abaixo, uma vez que o valor da estatística F é maior que o limite I (1) para os níveis de significância em questão, podemos concluir que existe evidência de uma relação de longo prazo entre as séries temporais envolvidas no modelo. Tabela 2: Testes de cointegração

Conclusão A identificação da existência de uma relação de longo prazo, ou de equilíbrio, entre parâmetros de risco e fatores macroeconômicos fortalece a hipótese de que mudanças das condições de mercado devem ser consideradas no cálculo do risco. A metodologia utilizada tem aplicação potencial em problemas tais como a estimação da probabilidade de default point-in-time e análises de estresse para cenários macroeconômicos projetados. Uma vez que um modelo contendo variáveis macroeconômicas foi estimado, é possível realizar análises de cenários de forma que seja possível identificar o impacto esperado sobre a exposição a riscos da instituição decorrentes de alterações sincronizadas de fatores múltiplos de risco e/ou a ocorrência de certos eventos extremamente desfavoráveis. Como exemplo podemos citar a análise com cenários históricos. Uma sugestão é a determinação de um intervalo de confiança de 95 ou 99% de confiança para as variações que já ocorreram, e determinando o limite inferior e superior destes intervalos como cenários otimistas e pessimistas ou o contrário, dependendo da interpretação do indicador.

Feedback do Artigo

Este conteúdo foi útil

Fique por Dentro das Novidades!

Inscreva-se e receba novidades sobre os assuntos que mais te interessam.

Leia também

Cluster Companies: What They Are and Why They Matter in Marketing

Cluster Companies: What They Are and Why They Matter in Marketing

Learn how business clusters drive innovation and results with data-driven strategies. Discover here how to apply and strengthen your operation!

Credit Risk Assessment in Banks: Key Metrics and Best Practices

Credit Risk Assessment in Banks: Key Metrics and Best Practices

Improve credit risk assessment in banks with smarter insights and accurate decisions. Explore how data intelligence enhances performance today now!

Entenda como apoiar a saúde mental do seu time no trabalho remoto e híbrido

Entenda como apoiar a saúde mental do seu time no trabalho remoto e híbrido

Descubra os riscos para a saúde mental existentes no trabalho remoto e híbrido e os cuidados que sua empresa deve adotar!

Engenharia de prompts: como aplicar no dia a dia

Engenharia de prompts: como aplicar no dia a dia

Entenda como a engenharia de prompts orienta a IA, melhora a precisão das respostas e torna tarefas do dia a dia mais eficientes e estratégicas!

Afastamento do trabalho: principais razões e como reduzir

Afastamento do trabalho: principais razões e como reduzir

Entenda as principais causas do afastamento do trabalho, seus impactos na carreira, os direitos garantidos ao colaborador e as responsabilidades da empresa.

Explainable AI (XAI): o que é e por que é essencial para a confiança nos algoritmos?

Explainable AI (XAI): o que é e por que é essencial para a confiança nos algoritmos?

Conheça aqui o que é Explainable AI (XAI) e como essa abordagem promove transparência, confiança e a melhor tomada de decisões em diferentes setores!