Empresas | Demanda por Crédito

Variação acumulada no ano 6,3%

Variação mensal -3,6%

Consumidor | Demanda por Crédito

Variação acumulada no ano 8,4%

Variação mensal -2,3%

Empresas | Recuperação de Crédito

Percentual médio no ano 38,7%

Percentual no mês 38,4%

Consumidor | Recuperação de Crédito

Percentual médio no ano 57,3%

Percentual no mês 57,8%

Cartão de Crédito | Cadastro Positivo

Ticket Médio R$ 1.280,32

Pontualidade do pagamento 77,9%

Empréstimo Pessoal | Cadastro Positivo

Ticket Médio R$ 402,57

Pontualidade do pagamento 82,6%

Veículos | Cadastro Positivo

Ticket Médio R$ 1.340,29

Pontualidade do pagamento 80,7%

Consignado | Cadastro Positivo

Ticket Médio R$ 268,95

Pontualidade do pagamento 92,0%

Tentativas de Fraudes

Acumulado no ano (em milhões) 6,94

No mês (em milhões) 1,15

Empresas | Inadimplência

Variação Anual 18,0%

No mês (em milhões) 8,1

MPEs | Inadimplência

Variação Anual 18,5%

No mês (em milhões) 7,7

Consumidor | Inadimplência

Percentual da população adulta 48,5%

No mês (em milhões) 79,2

Atividade do Comércio

Variação acumulada no ano 4,1%

Variação mensal 1,7%

Falência Requerida

Acumulado no ano 236

No mês 61

Recuperação Judicial Requerida

Acumulado no ano 638

No mês 167

Empresas | Demanda por Crédito

Variação acumulada no ano 6,3%

Variação mensal -3,6%

Consumidor | Demanda por Crédito

Variação acumulada no ano 8,4%

Variação mensal -2,3%

Empresas | Recuperação de Crédito

Percentual médio no ano 38,7%

Percentual no mês 38,4%

Consumidor | Recuperação de Crédito

Percentual médio no ano 57,3%

Percentual no mês 57,8%

Cartão de Crédito | Cadastro Positivo

Ticket Médio R$ 1.280,32

Pontualidade do pagamento 77,9%

Empréstimo Pessoal | Cadastro Positivo

Ticket Médio R$ 402,57

Pontualidade do pagamento 82,6%

Veículos | Cadastro Positivo

Ticket Médio R$ 1.340,29

Pontualidade do pagamento 80,7%

Consignado | Cadastro Positivo

Ticket Médio R$ 268,95

Pontualidade do pagamento 92,0%

Tentativas de Fraudes

Acumulado no ano (em milhões) 6,94

No mês (em milhões) 1,15

Empresas | Inadimplência

Variação Anual 18,0%

No mês (em milhões) 8,1

MPEs | Inadimplência

Variação Anual 18,5%

No mês (em milhões) 7,7

Consumidor | Inadimplência

Percentual da população adulta 48,5%

No mês (em milhões) 79,2

Atividade do Comércio

Variação acumulada no ano 4,1%

Variação mensal 1,7%

Falência Requerida

Acumulado no ano 236

No mês 61

Recuperação Judicial Requerida

Acumulado no ano 638

No mês 167

Marketing

As consequências da má qualidade dos dados para uma empresa

Conheça os principais prejuízos e riscos da má qualidade de dados, como decisões erradas, custos e perda de confiança no mercado.

As consequências da má qualidade dos dados para uma empresa

Manter a qualidade dos dados é um problema recorrente e que aflige inúmeras empresas. E se as lideranças de TI não tomam medidas para melhorar a precisão de suas informações, pode haver sérias consequências, pois há muitas maneiras pelas quais as empresas cometem erros com a compilação e gerenciamento de dados do cliente. Quando um cliente está preenchendo um formulário no site de uma empresa, por exemplo, ele pode errar uma palavra, fornecer um endereço desatualizado ou dar o número de telefone incorreto. Uma vez que estes dados errados são adicionados ao sistema eles podem ser difíceis de corrigir. Eles também podem levar a problemas de longo prazo. As empresas confiam em dados precisos para auxiliar seus esforços de marketing, vendas e atendimento ao cliente. Se eles não contêm a informação correta eles perdem tempo perseguindo leads que não existem. E o tempo, como se diz, é dinheiro. O relatório da Pesquisa Global de Qualidade de Dados 2017 da Experian indicou um impacto generalizado e alarmante desses problemas de qualidade: 58% por cento das organizações no Brasil disseram que enfrentaram desafios de governança de dados. Além disso, existem problemas para se entender as reais necessidades do cliente. Em um mundo cada vez mais “dominado” pelo Big Data, algumas empresas acabam tendo dificuldades em encontrar, organizar e analisar os dados corretos sobre seus clientes e encontrar assim, maneiras de aprimorar seus produtos e serviços. E, infelizmente, a qualidade dos dados disponíveis pode tornar isso quase impossível. A pesquisa constatou que, globalmente, 27% das organizações acreditam que os dados dos seus clientes e prospects são imprecisos. Assim, os problemas com a qualidade dos dados são praticamente inevitáveis. Errar é humano, e quase todos cometem um erro ocasional ao inserirem informações de clientes em bancos de dados. É essencial, portanto, que as empresas tomem medidas para proteger seus dados. Se não fizerem isso, as consequências podem ser surpreendentemente desagradáveis.

Feedback do Artigo

Este conteúdo foi útil

Fique por Dentro das Novidades!

Inscreva-se e receba novidades sobre os assuntos que mais te interessam.

Leia também

Entenda como apoiar a saúde mental do seu time no trabalho remoto e híbrido

Entenda como apoiar a saúde mental do seu time no trabalho remoto e híbrido

Descubra os riscos para a saúde mental existentes no trabalho remoto e híbrido e os cuidados que sua empresa deve adotar!

Engenharia de prompts: como aplicar no dia a dia

Engenharia de prompts: como aplicar no dia a dia

Entenda como a engenharia de prompts orienta a IA, melhora a precisão das respostas e torna tarefas do dia a dia mais eficientes e estratégicas!

Afastamento do trabalho: principais razões e como reduzir

Afastamento do trabalho: principais razões e como reduzir

Entenda as principais causas do afastamento do trabalho, seus impactos na carreira, os direitos garantidos ao colaborador e as responsabilidades da empresa.

Explainable AI (XAI): o que é e por que é essencial para a confiança nos algoritmos?

Explainable AI (XAI): o que é e por que é essencial para a confiança nos algoritmos?

Conheça aqui o que é Explainable AI (XAI) e como essa abordagem promove transparência, confiança e a melhor tomada de decisões em diferentes setores!

9 IAs para criar apresentações interativas em 2026

9 IAs para criar apresentações interativas em 2026

Buscando ferramentas de IA para criar apresentações envolventes? Saiba como funcionam, para quem são ideais e exemplos de uso. Confira agora!

IAs para programação e geração de códigos

IAs para programação e geração de códigos

Vai programar? Conheça IAs para programação, suas vantagens, limitações, e saiba como escolher a opção ideal para as suas necessidades.